Golden Recursion Inc. logoGolden Recursion Inc. logo
Advanced Search


Chemistry is the scientific discipline involving elements and compounds composed of atoms.

Chemistry is the scientific discipline involved with elements and compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.In the scope of its subject, chemistry occupies an intermediate position between physics and biology. It is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. For example, chemistry explains aspects of plant chemistry (botany), the formation of igneous rocks (geology), how atmospheric ozone is formed and how environmental pollutants are degraded (ecology), the properties of the soil on the moon (astrophysics), how medications work (pharmacology), and how to collect DNA evidence at a crime scene (forensics). Chemistry addresses topics such as how atoms and molecules interact via chemical bonds to form new chemical compounds. There are four types of chemical bonds: covalent bonds, in which compounds share one or more electron(s); ionic bonds, in which a compound donates one or more electrons to another compound to produce ions (cations and anions); hydrogen bonds; and Van der Waals force bonds.


Main article: History of chemistry

The history of chemistry spans a period from very old times to the present. Since several millennia BC, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. Examples include extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze. Chemistry was preceded by its protoscience, alchemy, which is an intuitive but non-scientific approach to understanding the constituents of matter and their interactions. It was unsuccessful in explaining the nature of matter and its transformations, but, by performing experiments and recording the results, alchemists set the stage for modern chemistry. Chemistry as a body of knowledge distinct from alchemy began to emerge when a clear differentiation was made between them by Robert Boyle in his work The Sceptical Chymist (1661). While both alchemy and chemistry are concerned with matter and its transformations, the crucial difference was given by the scientific method that chemists employed in their work. Chemistry is considered to have become an established science with the work of Antoine Lavoisier, who developed a law of conservation of mass that demanded careful measurement and quantitative observations of chemical phenomena. The history of chemistry is intertwined with the history of thermodynamics, especially through the work of Willard Gibbs.


The definition of chemistry has changed over time, as new discoveries and theories add to the functionality of the science. The term "chymistry", in the view of noted scientist Robert Boyle in 1661, meant the subject of the material principles of mixed bodies. In 1663, the chemist Christopher Glaser described "chymistry" as a scientific art, by which one learns to dissolve bodies, and draw from them the different substances on their composition, and how to unite them again, and exalt them to a higher perfection.

The 1730 definition of the word "chemistry", as used by Georg Ernst Stahl, meant the art of resolving mixed, compound, or aggregate bodies into their principles; and of composing such bodies from those principles. In 1837, Jean-Baptiste Dumas considered the word "chemistry" to refer to the science concerned with the laws and effects of molecular forces. This definition further evolved until, in 1947, it came to mean the science of substances: their structure, their properties, and the reactions that change them into other substances – a characterization accepted by Linus Pauling. More recently, in 1998, Professor Raymond Chang broadened the definition of "chemistry" to mean the study of matter and the changes it undergoes.


Main article: History of chemistry

See also: Alchemy and Timeline of chemistry

Democritus' atomist philosophy was later adopted by Epicurus (341–270 BCE).

Early civilizations, such as the Egyptians Babylonians and Indians amassed practical knowledge concerning the arts of metallurgy, pottery and dyes, but didn't develop a systematic theory.

A basic chemical hypothesis first emerged in Classical Greece with the theory of four elements as propounded definitively by Aristotle stating that fire, air, earth and water were the fundamental elements from which everything is formed as a combination. Greek atomism dates back to 440 BC, arising in works by philosophers such as Democritus and Epicurus. In 50 BCE, the Roman philosopher Lucretius expanded upon the theory in his book De rerum natura (On The Nature of Things). Unlike modern concepts of science, Greek atomism was purely philosophical in nature, with little concern for empirical observations and no concern for chemical experiments.

An early form of the idea of conservation of mass is the notion that "Nothing comes from nothing" in Ancient Greek philosophy, which can be found in Empedocles (approx. 4th century BC): "For it is impossible for anything to come to be from what is not, and it cannot be brought about or heard of that what is should be utterly destroyed." and Epicurus (3rd century BC), who, describing the nature of the Universe, wrote that "the totality of things was always such as it is now, and always will be".[47]

15th-century artistic impression of Jābir ibn Hayyān (Geber), a Perso-Arab alchemist and pioneer in organic chemistry.

In the Hellenistic world the art of alchemy first proliferated, mingling magic and occultism into the study of natural substances with the ultimate goal of transmuting elements into gold and discovering the elixir of eternal life. Work, particularly the development of distillation, continued in the early Byzantine period with the most famous practitioner being the 4th century Greek-Egyptian Zosimos of Panopolis. Alchemy continued to be developed and practised throughout the Arab world after the Muslim conquests, and from there, and from the Byzantine remnants, diffused into medieval and Renaissance Europe through Latin translations.

The development of the modern scientific method was slow and arduous, but an early scientific method for chemistry began emerging among early Muslim chemists, beginning with the 9th century Perso-Arab chemist Jābir ibn Hayyān, popularly known as "the father of chemistry". The Arabic works attributed to him introduced a systematic classification of chemical substances, and provided instructions for deriving an inorganic compound (sal ammoniac or ammonium chloride) from organic substances (such as plants, blood, and hair) by chemical means. Some Arabic Jabirian works (e.g., the "Book of Mercy", and the "Book of Seventy") were later translated into Latin under the Latinized name "Geber", and in 13th-century Europe an anonymous writer, usually referred to as pseudo-Geber, started to produce alchemical and metallurgical writings under this name. Later influential Muslim philosophers, such as Abū al-Rayhān al-Bīrūnī and Avicenna disputed the theories of alchemy, particularly the theory of the transmutation of metals.

Under the influence of the new empirical methods propounded by Sir Francis Bacon and others, a group of chemists at Oxford, Robert Boyle, Robert Hooke and John Mayow began to reshape the old alchemical traditions into a scientific discipline. Boyle in particular is regarded as the founding father of chemistry due to his most important work, the classic chemistry text The Sceptical Chymist where the differentiation is made between the claims of alchemy and the empirical scientific discoveries of the new chemistry. He formulated Boyle's law, rejected the classical "four elements" and proposed a mechanistic alternative of atoms and chemical reactions that could be subject to rigorous experiment.

Antoine-Laurent de Lavoisier is considered the "Father of Modern Chemistry".

The theory of phlogiston (a substance at the root of all combustion) was propounded by the German Georg Ernst Stahl in the early 18th century and was only overturned by the end of the century by the French chemist Antoine Lavoisier, the chemical analogue of Newton in physics; who did more than any other to establish the new science on proper theoretical footing, by elucidating the principle of conservation of mass and developing a new system of chemical nomenclature used to this day.

Before his work, though, many important discoveries had been made, specifically relating to the nature of 'air' which was discovered to be composed of many different gases. The Scottish chemist Joseph Black (the first experimental chemist) and the Flemish Jan Baptist van Helmont discovered carbon dioxide, or what Black called 'fixed air' in 1754; Henry Cavendish discovered hydrogen and elucidated its properties and Joseph Priestley and, independently, Carl Wilhelm Scheele isolated pure oxygen.

English scientist John Dalton proposed the modern theory of atoms; that all substances are composed of indivisible 'atoms' of matter and that different atoms have varying atomic weights.

The development of the electrochemical theory of chemical combinations occurred in the early 19th century as the result of the work of two scientists in particular, Jöns Jacob Berzelius and Humphry Davy, made possible by the prior invention of the voltaic pile by Alessandro Volta. Davy discovered nine new elements including the alkali metals by extracting them from their oxides with electric current.

In his periodic table, Dmitri Mendeleev predicted the existence of 7 new elements, and placed all 60 elements known at the time in their

British William Prout first proposed ordering all the elements by their atomic weight as all atoms had a weight that was an exact multiple of the atomic weight of hydrogen. J.A.R. Newlands devised an early table of elements, which was then developed into the modern periodic table of elements in the 1860s by Dmitri Mendeleev and independently by several other scientists including Julius Lothar Meyer. The inert gases, later called the noble gases were discovered by William Ramsay in collaboration with Lord Rayleigh at the end of the century, thereby filling in the basic structure of the table.

At the turn of the twentieth century the theoretical underpinnings of chemistry were finally understood due to a series of remarkable discoveries that succeeded in probing and discovering the very nature of the internal structure of atoms. In 1897, J.J. Thomson of Cambridge University discovered the electron and soon after the French scientist Becquerel as well as the couple Pierre and Marie Curie investigated the phenomenon of radioactivity. In a series of pioneering scattering experiments Ernest Rutherford at the University of Manchester discovered the internal structure of the atom and the existence of the proton, classified and explained the different types of radioactivity and successfully transmuted the first element by bombarding nitrogen with alpha particles.

His work on atomic structure was improved on by his students, the Danish physicist Niels Bohr and Henry Moseley. The electronic theory of chemical bonds and molecular orbitals was developed by the American scientists Linus Pauling and Gilbert N. Lewis.

The year 2011 was declared by the United Nations as the International Year of Chemistry. It was an initiative of the International Union of Pure and Applied Chemistry, and of the United Nations Educational, Scientific, and Cultural Organization and involves chemical societies, academics, and institutions worldwide and relied on individual initiatives to organize local and regional activities.

Organic chemistry was developed by Justus von Liebig and others, following Friedrich Wöhler's synthesis of urea which proved that living organisms were, in theory, reducible to chemistry. Other crucial 19th century advances were; an understanding of valence bonding (Edward Frankland in 1852) and the application of thermodynamics to chemistry (J. W. Gibbs and Svante Arrhenius in the 1870s).


Further Resources



BBC News
October 11, 2021
BBC News
Journalist Maria Ressa was the only woman to win a Nobel Prize this year, and just the 58th in history.
Katyanna Quach
October 7, 2021
20m Swedish kronor - close to 2 million quid - to be shared
By Paul Rincon
October 6, 2021
BBC News
A Briton and a German have been awarded the chemistry Nobel for their work to build new molecules.
Science X staff
June 25, 2021
Chemists at Scripps Research have solved a long-standing problem in their field by developing a method for making a highly useful and previously very challenging type of modification to organic molecules. The breakthrough eases the process of modifying a variety of existing molecules for valuable applications, such as improving the potency and duration of drugs.
June 24, 2021
Anavo Therapeutics announced three key appointments to its Scientific Advisory Board in the persons of Karl-Heinz Altmann, Andrew Mortlock and Gregg Siegal.


Golden logo
By using this site, you agree to our Terms & Conditions.