Patent attributes
The technology disclosed relates to learning how to efficiently display anomalies in performance data to an operator. In particular, it relates to assembling performance data for a multiplicity of metrics across a multiplicity of resources on a network and training a classifier that implements at least one circumstance-specific detector used to monitor a time series of performance data or to detect patterns in the time series. The training includes producing a time series of anomaly event candidates including corresponding event information used as input to the detectors, generating feature vectors for the anomaly event candidates, selecting a subset of the candidates as anomalous instance data, and using the feature vectors for the anomalous instance data and implicit and/or explicit feedback from users exposed to a visualization of the monitored time series annotated with visual tags for at least some of the anomalous instances data to train the classifier.