Patent 10261851 was granted and assigned to Lightbend, Inc. on April, 2019 by the United States Patent and Trademark Office.
The technology disclosed relates to learning how to efficiently display anomalies in performance data to an operator. In particular, it relates to assembling performance data for a multiplicity of metrics across a multiplicity of resources on a network and training a classifier that implements at least one circumstance-specific detector used to monitor a time series of performance data or to detect patterns in the time series. The training includes producing a time series of anomaly event candidates including corresponding event information used as input to the detectors, generating feature vectors for the anomaly event candidates, selecting a subset of the candidates as anomalous instance data, and using the feature vectors for the anomalous instance data and implicit and/or explicit feedback from users exposed to a visualization of the monitored time series annotated with visual tags for at least some of the anomalous instances data to train the classifier.