Log in
Enquire now
‌

SANARIA INC. SBIR Phase I Award, August 2020

A SBIR Phase I contract was awarded to Sanaria Inc. in August, 2020 for $300,000.0 USD from the U.S. Department of Health & Human Services and National Institutes of Health.

OverviewStructured DataIssuesContributors

Contents

sbir.gov/node/1915755
Is a
SBIR/STTR Awards
SBIR/STTR Awards

SBIR/STTR Award attributes

SBIR/STTR Award Recipient
Sanaria Inc.
Sanaria Inc.
0
Government Agency
0
Government Branch
National Institutes of Health
National Institutes of Health
0
Award Type
SBIR0
Contract Number (US Government)
1R43AI155274-010
Award Phase
Phase I0
Award Amount (USD)
300,0000
Date Awarded
August 17, 2020
0
End Date
July 31, 2022
0
Abstract

The WHO estimates that in 2018, malaria caused ~228M clinical episodes and ~405,000 deaths worldwide. Despite an annual investment of andgt;$3 billion for control measures, 2018 was the 3rd consecutive year in which there was no decrease in malaria cases, indicating a saturation of capacity to implement further impact with currently available strategies. There is an urgent unmet medical need for a highly efficacious malaria vaccine that prevents infection and disease. Sanaria’s 1st generation vaccine based on radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum (Pf) sporozoites (SPZ) PfSPZ Vaccine has been assessed in 19 clinical trials in 6 countries in Africa, 2 countries in Europe, and the US, and received Fast Track designation from the FDA. Clinical trials with Phase 3 compliant vaccine will begin in mid 2020, and licensure (marketing authorization) in the US (FDA) and in Europe (EMA) is planned for 2022. PfSPZ Vaccine is targeted to prevent malaria in travelers to and residents of Africa, and for immunizing the entire community to halt transmission and eliminate malaria from geographically focused areas of Africa. During the next 5-10 years, we aim to significantly increase potency and decrease cost of goods (COGs) of PfSPZ-based vaccines so they can be optimally used to prevent Pf malaria. One of our strategies to improve the breadth of protection in our vaccines is to include additional strains of Pf from geographically diverse regions such as Pf7G8 (Brazil) and PfNF135.C10 (Cambodia). Other than PfNF54 (West Africa strain), all other Pf strains assessed in humans are poor gametocyte producers. An approach to improving the efficiency of large-scale production of PfSPZs from different geographic regions and decreasing COGs would be generating increased numbers of fertile gametocytes per unit of culture for production of PfSPZ in mosquitoes. In nature, gametocytogenesis occurs only in a small subset of blood stage parasites due to epigenetic suppression of gametocytogenesis-related genes. Control of gametocyte commitment would provide a powerful tool for improving production of PfSPZ. A key molecule in this process is the master switch transcription factor, PfAP2-G, the expression of which correlates directly with the percent of gametocytes produced by a given Pf strain. Deletion of this gene completely abolishes gametocyte production. We propose to increase the gametocyte production capacity of Sanaria’s vaccine strains and decrease PfSPZ manufacturing COGs by over-expressing this gene by using CRISPR-Cas9 gene editing to modify the pairing elements (PE) in the 3’-UTR of pfap2-g. As an alternative, we will also relieve epigenetic silencing of PfAP2-G by replacing its promoter with the constitutive calmodulin promoter in a conditionally regulatable gametocyte induction (on/off) system we have developed. We will generate enhanced gametocyte-producing lines of Pf from different geographic regions, compare and evaluate clones with enhanced gametocytogenesis and select those with optimal in vitro growth that maintain high prevalence and intensities of infectious PfSPZs in aseptic mosquitoes.PROJECT NARRATIVE Malaria afflicts over two billion people, killing over 600,000 individuals each year mostly children in Africa. A powerful tool is needed for eliminating Plasmodium falciparum malaria from defined geographical areas. The ideal tool would be a highly effective, long-acting vaccine that prevents infection, disease and parasite transmission. This proposal describes the development, manufacture and quality control release of a late liver stage genetically attenuated Plasmodium falciparum sporozoite vaccine engineered to arrest development in liver stages, as the basis for a next-generation whole sporozoite malaria vaccine that is ready for clinical testing.

Timeline

No Timeline data yet.

Further Resources

Title
Author
Link
Type
Date
No Further Resources data yet.

References

Find more entities like SANARIA INC. SBIR Phase I Award, August 2020

Use the Golden Query Tool to find similar entities by any field in the Knowledge Graph, including industry, location, and more.
Open Query Tool
Access by API
Golden Query Tool
Golden logo

Company

  • Home
  • Press & Media
  • Blog
  • Careers
  • WE'RE HIRING

Products

  • Knowledge Graph
  • Query Tool
  • Data Requests
  • Knowledge Storage
  • API
  • Pricing
  • Enterprise
  • ChatGPT Plugin

Legal

  • Terms of Service
  • Enterprise Terms of Service
  • Privacy Policy

Help

  • Help center
  • API Documentation
  • Contact Us
By using this site, you agree to our Terms of Service.