Log in
Enquire now
‌

One Monad to Prove Them All

OverviewStructured DataIssuesContributors

Contents

Is a
‌
Academic paper
0

Academic Paper attributes

arXiv ID
1805.080590
arXiv Classification
Computer science
Computer science
0
Publication URL
arxiv.org/pdf/1805.08059v40
Publisher
ArXiv
ArXiv
0
DOI
doi.org/10.48550/ar...05.080590
Paid/Free
Free0
Academic Discipline
Computer science
Computer science
0
Programming language
Programming language
0
Submission Date
February 1, 2019
0
October 1, 2018
0
June 10, 2018
0
May 21, 2018
0
Author Names
Finn Teegen0
Sandra Dylus0
Jan Christiansen0
Paper abstract

One Monad to Prove Them All is a modern fairy tale about curiosity and perseverance, two important properties of a successful PhD student. We follow the PhD student Mona on her adventure of proving properties about Haskell programs in the proof assistant Coq. On the one hand, as a PhD student in computer science Mona observes an increasing demand for correct software products. In particular, because of the large amount of existing software, verifying existing software products becomes more important. Verifying programs in the functional programming language Haskell is no exception. On the other hand, Mona is delighted to see that communities in the area of theorem proving are becoming popular. Thus, Mona sets out to learn more about the interactive theorem prover Coq and verifying Haskell programs in Coq. To prove properties about a Haskell function in Coq, Mona has to translate the function into Coq code. As Coq programs have to be total and Haskell programs are often not, Mona has to model partiality explicitly in Coq. In her quest for a solution Mona finds an ancient manuscript that explains how properties about Haskell functions can be proven in the proof assistant Agda by translating Haskell programs into monadic Agda programs. By instantiating the monadic program with a concrete monad instance the proof can be performed in either a total or a partial setting. Mona discovers that the proposed transformation does not work in Coq due to a restriction in the termination checker. In fact the transformation does not work in Agda anymore as well, as the termination checker in Agda has been improved. We follow Mona on an educational journey through the land of functional programming where she learns about concepts like free monads and containers as well as basics and restrictions of proof assistants like Coq. These concepts are well-known individually, but their interplay gives rise to a solution for Monas problem based on the originally proposed monadic tranformation that has not been presented before. When Mona starts to test her approach by proving a statement about simple Haskell functions, she realizes that her approach has an additional advantage over the original idea in Agda. Monas final solution not only works for a specific monad instance but even allows her to prove monad-generic properties. Instead of proving properties over and over again for specific monad instances she is able to prove properties that hold for all monads representable by a container-based instance of the free monad. In order to strengthen her confidence in the practicability of her approach, Mona evaluates her approach in a case study that compares two implementations for queues. In order to share the results with other functional programmers the fairy tale is available as a literate Coq file. If you are a citizen of the land of functional programming or are at least familiar with its customs, had a journey that involved reasoning about functional programs of your own, or are just a curious soul looking for the next story about monads and proofs, then this tale is for you.

Timeline

No Timeline data yet.

Further Resources

Title
Author
Link
Type
Date
No Further Resources data yet.

References

Find more entities like One Monad to Prove Them All

Use the Golden Query Tool to find similar entities by any field in the Knowledge Graph, including industry, location, and more.
Open Query Tool
Access by API
Golden Query Tool
Golden logo

Company

  • Home
  • Press & Media
  • Blog
  • Careers
  • WE'RE HIRING

Products

  • Knowledge Graph
  • Query Tool
  • Data Requests
  • Knowledge Storage
  • API
  • Pricing
  • Enterprise
  • ChatGPT Plugin

Legal

  • Terms of Service
  • Enterprise Terms of Service
  • Privacy Policy

Help

  • Help center
  • API Documentation
  • Contact Us
By using this site, you agree to our Terms of Service.