Golden logoGolden logo
Advanced Search
Antibody

Antibody

Large y-shaped protein produced by b-cells, used by the immune system

An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the pathogen, called an antigen. Each tip of the "Y" of an antibody contains a paratope (analogous to a lock) that is specific for one particular epitope (analogous to a key) on an antigen, allowing these two structures to bind together with precision. Using this binding mechanism, an antibody can tag a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly (for example, by blocking a part of a virus that is essential for its invasion).

Antibodies are glycoproteins belonging to the immunoglobulin superfamily. The terms antibody and immunoglobulin are often used interchangeably, though the term 'antibody' is sometimes reserved for the secreted, soluble form, i.e. excluding B-cell receptors.

To allow the immune system to recognize millions of different antigens, the antigen-binding sites at both tips of the antibody come in an equally wide variety. In contrast, the remainder of the antibody is relatively constant. It only occurs in a few variants, which define the antibody's class or isotype: IgA, IgD, IgE, IgG, or IgM. The constant region at the trunk of the antibody includes sites involved in interactions with other components of the immune system. The class hence determines the function triggered by an antibody after binding to an antigen, in addition to some structural features. Antibodies from different classes also differ in where they are released in the body and at what stage of an immune response.

Together with B and T cells, antibodies comprise the most important part of the adaptive immune system. They occur in two forms: one that is attached to a B cell, and the other, a soluble form, that is unattached and found in extracellular fluids such as blood plasma. Initially, all antibodies are of the first form, attached to the surface of a B cell – these are then referred to as B-cell receptors (BCR). After an antigen binds to a BCR, the B cell activates to proliferate and differentiate into either plasma cells, which secrete soluble antibodies with the same paratope, or memory B cells, which survive in the body to enable long-lasting immunity to the antigen.Soluble antibodies are released into the blood and tissue fluids, as well as many secretions. Because these fluids were traditionally known as humors, antibody-mediated immunity is sometimes known as, or considered a part of, humoral immunity. The soluble Y-shaped units can occur individually as monomers, or in complexes of two to five units.

Antibodies can come in different varieties known as isotypes or classes. In placental mammals there are five antibody classes known as IgA, IgD, IgE, IgG, and IgM, which are further subdivided into subclasses such as IgA1, IgA2.

The classes differ in their biological properties, functional locations and ability to deal with different antigens.

For example, IgE antibodies are responsible for an allergic response consisting of histamine release from mast cells, often a sole contributor to asthma.

Light chain types

In mammals there are two types of immunoglobulin light chain, which are called lambda (λ) and kappa (κ). However, there is no known functional difference between them, and both can occur with any of the five major types of heavy chains. Each antibody contains two identical light chains: both κ or both λ. Proportions of κ and λ types vary by species and can be used to detect abnormal proliferation of B cell clones. Other types of light chains, such as the iota (ι) chain, are found in other vertebrates like sharks (Chondrichthyes) and bony fishes (Teleostei).

In non-mammalian animals

In most placental mammals, the structure of antibodies is generally the same. Jawed fish appear to be the most primitive animals that are able to make antibodies similar to those of mammals, although many features of their adaptive immunity appeared somewhat earlier.

Timeline

Further Resources

Title
Author
Link
Type
Date

News

Title
Author
Date
Publisher
Description
August 2, 2021
News-Medical.net
Researchers in the United States have conducted a study showing the difference in antibody evolution following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between people who have not previously been infected with the virus and those who have.
August 2, 2021
News-Medical.net
Researchers in the United States have conducted a study showing the difference in antibody evolution following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between people who have not previously been infected with the virus and those who have.
PTI
July 20, 2021
The Week
Antibody levels remain high nine months after infection with SARS-CoV-2
Tribune News Service
July 19, 2021
Tribuneindia News Service
London, July 19 Antibody levels remain high nine months after infection with SARS-CoV-2, the virus that causes COVID-19, whether symptomatic or asymptomatic, according to a study published on Monday
July 19, 2021
The Indian Express
The team also found cases of antibody levels increasing in some people, suggesting potential re-infections with the virus, providing a boost to the immune system.
SHOW MORE

References

Golden logo
By using this site, you agree to our Terms of Service.