A SBIR Phase II contract was awarded to Alpha Star Corporation in June, 2021 for $999,537.0 USD from the U.S. Department of Defense and United States Navy.
There is no single Structural Heath Monitoring (SHM) system available today which is capable to perform complete, on board (i.e. real-time) and validated structural evaluation of e.g. manned craft extensible to unmanned vessels of interest to the US Navy. This deficiency is related to both extrinsic factors including the variable operational and loading conditions, complex geometries/materials, synchronous activation of several damage mechanisms, as well as intrinsic ones including limitations in the hardware/software tools used and inability to define clearly what could be a measurable parameter to reliably describe evolving operational states. The primary objective of this program is therefore to offer the US Navy a Health Monitoring System (HMS) to enable real-time/ultra-rapid recording, diagnostics and prognostic capabilities to identify maintenance/repair issues as well as to provide post-mission forensic analysis and playback of related data. The proposed technology has the potential to overcome the limitations of current costly, time-consuming, operator dependent, and downtime-requiring HMS approaches. The demonstrated/verified HMS technology can be applied fleet-wide to military and commercial applications. In this program the research and development team will focus in detecting and monitoring fatigue events and associated damage causes (i.e. cracks, debondings, delaminations etc.) in both metallic and composite structural components. The team will identify and analyze different fatigue types including quasi-static harmonic, random, low and high cycle fatigue2. The main technical objective of this Phase II program will be to minimize code development and associated component integration to increase the HMS’ TRL from 4 to 7 so that it can be implemented in actual ship structural components. The team will use its existing SHM system and various legacy models to demonstrate the capabilities to detect fatigue events. The team will also demonstrate both physics-based and statistical/probabilistic models to demonstrate prognostic capabilities. The proposed design for the data acquisition system will be small and lightweight, packaged as a single unit and eventually integrated with other combatant craft systems. The technical objective that will be developed will include detail description of the algorithms developed to detect key events and monitor damage. The proposed HMS will be capable of accommodating multiple sensing systems namely strain gauges, fiber optics and piezoelectric transducers. The diagnostic and prognostic capable HMS system will be performing data analysis at the edge followed by prognostics by leveraging verified models. The final objective of this Phase II program will be to demonstrate the developed capabilities f on an actual ship under operation.