A hybrid MOS-PCM IC switch utilizes both MOS transistors and groups of parallel-connected Phase-Change Material (PCM) cells to control signal transmissions. The MOS transistors are separated by PCM cell groups, and the PCM cells are configured to generate similar COFF or lower values as the MOS transistors, whereby the hybrid switch is both smaller and exhibits lower FOM than standard CMOS SOI switches. When switched into an open (OFF/high-resistance) state, both the PCM cells and MOS transistors function to distribute high VBSR voltages, and the MOS transistors prevent unintended phase changes (ON/OFF switching) of the PCM cells by preventing exponential current flow. In the closed (ON/conducting) state, the PCM cells facilitate lower total RON, whereby the hybrid CMOS SOI switch achieves improved FOM. The MOS transistors may also function as drivers during programming (switching) of direct-heating-type PCM cells.