In a method of real-time 3-D visualization and navigation for interventional procedures a position is determined at which data will be acquired, and data is acquired at the position. Features are extracted from the acquired data. A model described by the extracted features is built or updated, wherein updating the model includes calculating at least one acquisition parameter of a set of acquisition parameters. 3-D scenes showing the interior or exterior of one or more organs are displayed using the model or data extracted from the model. A region for updating is determined.