Cardiac tissue motion characteristics acquired by novel cardiac sensors are analyzed and processed for the derivation of physiological indices. The indices are output to a hand held local or remote volumetric haptic display and enable an operator to obtain motion related dynamic characteristics of cardiac tissues. The ability to tactually sense the motion of cardiac tissue and the affect on such motion from inserted cardiovascular instrumentation enhances the operator's performance of procedures including the positioning and placement of implanted catheters/sensors, extraction of permanently implanted leads and delivery of cardiovascular therapies. Optimal haptic rendering is achieved by using computational techniques to reconstruct the physically and perceptually relevant aspects of acquired signals and bridge the gap between the inserted catheter and operator's hand/catheter handle.