Patent attributes
A composite hollow aspirator shaft is formed of fiberglass-reinforced phenolic resin that reduces the amount of vibration that is transferred to the motor rotating the shaft, and the motor's bearings. This extends motor and bearing life. When the aspirator tip is rotated in a liquid, fluidic forces are transferred to the shaft. Rather than transmitting those forces into the motor and its bearings, the composite aspirator shaft attenuates the forces to prevent most of them from reaching the motor and its bearings. The composite shaft material has a flexural modulus, or ratio, within the elastic limit of any applied stress, and is sufficiently low to allow the transfer of the flexural or oscillatory energy into heat within the shaft instead of conveying the energy in the form of vibration/oscillations along the axial length of the shaft. As an added advantage, the fiberglass resists abrasion better in wastewater than stainless steel used in the prior art.