A hydraulic system for a vehicle suspension for a vehicle, the vehicle including a vehicle body and at least two forward and two rearward wheel assemblies, the vehicle suspension including front and rear resilient vehicle support means between the vehicle body and the wheel assemblies for resiliently supporting the vehicle above the wheel assemblies, the hydraulic system including: at least two front (11, 12) and two rear (13, 14) wheel rams respectively located between the wheel assemblies and the vehicle body, each ram (11 to 14) including at least a compression chamber (45 to 48) and a rebound chamber (49 to 52); wherein the compression chamber (45, 46) and rebound chamber (49, 50) of each said front wheel ram (11, 12) is in fluid communication with the rebound chamber (47, 48) and compression chamber (51, 52) respectively of a diagonally opposed said rear wheel ram (13, 14) to respectively provide two fluid circuits, each fluid circuit providing a front and back compression volume therein, the front compression volume of each said fluid circuit being in fluid communication with the back compression volume of the other said fluid conduit, and wherein damping means (53 to 56, 71, 72) are provided for damping fluid flow within each compression volume and between the front and back compression volumes such that suspension parameters provided by the hydraulic system, including roll stiffness, roll damping, pitch damping and heave damping, can be independently tuned from each other.