An automated employee selection system can use a variety of techniques to provide information for assisting in selection of employees. For example, pre-hire and post-hire information can be collected electronically and used to build an artificial-intelligence based model. The model can then be used to predict a desired job performance criterion (e.g., tenure, number of accidents, sales level, or the like) for new applicants. A wide variety of features can be supported, such as electronic reporting. Pre-hire information identified as ineffective can be removed from a collected pre-hire information. For example, ineffective questions can be identified and removed from a job application. New items can be added and their effectiveness tested. As a result, a system can exhibit adaptive learning and maintain or increase effectiveness even under changing conditions.