A laminated ceramic capacitor has a high breakdown voltage and excellent withstand-voltage performance, and prevents cracks generated during firing even when the number of lamination layers constituted by ceramic layers and inner electrode layers is increased. The laminated ceramic capacitor includes capacitance forming layers in which ceramic dielectric layers and capacitance-forming inner electrode layers are laminated, and a stress relieving layer. The stress relieving layer is disposed between the capacitance forming layers. In the stress relieving layer, ceramic dielectric layers, dummy inner electrode layers (split electrodes) that do not contribute to the formation of electrostatic capacitance, and capacitance-formation-preventing inner electrode layers that prevent capacitance from being formed between the capacitance-forming inner electrode layers and the dummy inner electrode layers are laminated. The thickness of the stress relieving layer is in the range of about 100 μm to about 300 μm inclusive. The plane area of the dummy inner electrode layers is about 60% or more of that of the capacitance-forming inner electrode layers. The dummy inner electrode layers are undivided or are divided into two or three parts in a single layer. With this structure, stress caused by electrostriction is relieved.