Techniques are described for space-time block coding for single-carrier block transmissions over frequency selective multipath fading channels. Techniques are described that achieve a maximum diversity of order NtNr(L+1) in rich scattering environments, where Nt(Nr) is the number of transmit (receive) antennas, and L is the order of the finite impulse response (FIR) channels. The techniques may include parsing a stream of information-bearing symbols to form blocks of K symbols, precoding the symbols to form blocks having J symbols, and collecting consecutive NS blocks. The techniques may further include applying a permutation matrix to the NS blocks, generating a space-time block coded matrix having Nt rows that are communicated through a wireless communication medium. The receiver complexity is comparable to single antenna transmissions, and the exact Viterbi's algorithm can be applied for maximum-likelihood (ML) optimal decoding.