A sump liner comprising a liner wall joined with a base member, the liner wall extending about the periphery of the base member, the liner wall comprising a primary reservoir portion and a secondary reservoir portion, with a weir extending from the base member and the inside surface of the liner wall. The weir divides the sump liner interior into a primary reservoir and a secondary reservoir, with a primary pump to remove water from the primary reservoir and a secondary pump to remove water from the secondary reservoir. The primary reservoir receives drainage water through an inlet pipe. The secondary reservoir receives drainage water that flows over the weir in the event the primary pump in the primary reservoir fails, in which case the secondary pump in the secondary reservoir pumps out the water. The weir may have an inverted V-shape. A sump liner and with a vented lid bolted to it to form an airtight seal. The vented lid comprising a body defining a vent opening, electric cable openings, and a drain pipe opening. A drain connects to the vented lid and a drain pipe extends from the drain and into the sump liner, the drain pipe having a submersed end for being submerged in water in the sump liner and for forming a seal with water in the sump liner so that gas from inside the sump liner cannot exit the sump liner through the drain.