Patent attributes
Methane is reacted with steam, to generate carbon monoxide and hydrogen in a first catalytic reactor; the resulting gas mixture can then be used to perform Fischer-Tropsch synthesis in a second catalytic reactor. In performing the steam/methane reforming, the gas mixture is passed through a narrow flow channel containing a catalyst structure on a metal substrate, and adjacent to a source of heat, in a time less than 0.5 s, so that only those reactions that have comparatively rapid kinetics will occur. Both the average temperature and the exit temperature of the channel are in the range 750° to 900° C. The ratio of steam to methane should preferably be 1.4 to 1.6, for example about 1.5. Almost all the methane will undergo the reforming reaction, almost entirely forming carbon monoxide. After performing Fischer-Tropsch synthesis, the remaining hydrogen is preferably used to provide heat for the reforming reaction.