Amorphous or polycrystalline films have been recrystallized into single-crystal thin films (of micrometer thickness) by a zone melting technique, in which an electrically heated wire generated a narrow heated or molten zone (0.5-2 mm wide) on the substrate sandwiched between two pieces of glass or indium-tin-oxide-coated glass. The substrate can be either an organic or inorganic compound. When the molten zone was moved slowly (3-120 μm/min) across the layer from one end of the cell to the other, a single-crystal film was produced after a single pass. This technique allows for thin film purification and an improvement in electronic, optical, and optoelectronic properties of the thin film. After this treatment, the steady-state short-circuit photocurrent can be improved by several orders of magnitude. These films are useful in the fields of optics and electronics for improving the performance in devices such as thin-film transistors and organic light-emitting diodes.