A thermally sensitive ionic redox transistor comprises a channel, a reservoir layer, and an electrolyte layer disposed between the channel and the reservoir layer. A conductance of the channel is varied by changing concentration of ions in the channel layer. The electrolyte layer is configured to undergo a state change at a state transition temperature. Below the state transition temperature, ions in the electrolyte layer are substantially immobile. Above the state transition temperature, ions can move freely between the reservoir layer and the channel across the electrolyte layer in response to a voltage being applied between the channel and the reservoir layer. When the device is cooled below the state transition temperature or temperature range, the ions are trapped in one or more of the layers because the electrolyte layer loses its ionic conductivity. A state of the redox transistor can be read by measuring the conductance of the channel.