Techniques are described for executing machine learning models trained for specific operators with feature values that are based on the actual execution of a workload set. The machine learning models generate an estimate of benefit gain/cost for executing operations on data portions in the alternative encoding format. Such data potions may be sorted based on the estimated benefit, in an embodiment. Using cost estimation machine learning models for memory space, the data portions with the most benefits that comply with the existing memory space constraints are recommended and/or are automatically encoded into the alternative encoding format.