Patent attributes
Embodiments detect cyberattack campaigns against multiple cloud tenants by analyzing activity data to find sharing anomalies. Data that appears benign in a single tenant's activities may indicate an attack when the same or similar data is also found for additional tenants. Attack detection may depend on activity time frames, on how similar certain activities of different tenants are to one another, on how unusual it is for different tenants to share an activity, and on other factors. Sharing anomaly analysis may utilize hypergeometric probabilities or other statistical measures. Detection avoidance attempts using entity randomization are revealed and thwarted. Authorized vendors may be recognized, mooting anomalousness. Although data from multiple tenants is analyzed together for sharing anomalies while monitoring for attacks, tenant confidentiality and privacy are respected through technical and legal mechanisms. Mitigation is performed in response to an attack indication.