Patent attributes
A computer-implemented method of training a model for making time-series predictions of a computer-controlled system. The model uses a stochastic differential equation (SDE) comprising a drift component and a diffusion component. The drift component has a predefined part representing domain knowledge, that is received as an input to the training; and a trainable part. When training the model, values of the set of SDE variables at a current time point are predicted based on their values at a previous time point, and based on this, the model is refined. In order to predict the values of the set of SDE variables, the predefined part of the drift component is evaluated to get a first drift, and the first drift is combined with a second drift obtained by evaluating the trainable part of the drift component.

