Patent attributes
Techniques for quantifying accuracy of a prediction model that has been trained on a data set parameterized by multiple features are provided. The model performs in accordance with a theoretical performance manifold over an intractable input space in connection with the features. A determination is made as to which of the features are strongly correlated with performance of the model. Based on the features determined to be strongly correlated with performance of the model, parameterized sub-models are created such that, in aggregate, they approximate the intractable input space. Prototype exemplars are generated for each of the created sub-models, with the prototype exemplars for each created sub-model being objects to which the model can be applied to result in a match with the respective sub-model. The accuracy of the model is quantified using the generated prototype exemplars. A recommendation engine is provided for when there are particular areas of interest.