In one embodiment, a set of feature vectors can be derived from any biometric data, and then using a deep neural network (“DNN”) on those one-way homomorphic encryptions (i.e., each biometrics' feature vector) can determine matches or execute searches on encrypted data. Each biometrics' feature vector can then be stored and/or used in conjunction with respective classifications, for use in subsequent comparisons without fear of compromising the original biometric data. In various embodiments, the original biometric data is discarded responsive to generating the encrypted values. In another embodiment, the homomorphic encryption enables computations and comparisons on cypher text without decryption. This improves security over conventional approaches. Searching biometrics in the clear on any system, represents a significant security vulnerability. In various examples described herein, only the one-way encrypted biometric data is available on a given device. Various embodiments restrict execution to occur on encrypted biometrics for any matching or searching.