Patent attributes
Computer-implemented methods of providing personalized recommendations to a user of items available in an online system, and related systems. First-level features including context features are computed based upon context data. A first-level machine learning model is then evaluated using the first-level features to generate predictions of user behavior in relation to a plurality of individual items available via the online system. A list of proposed item recommendations is constructed based upon the predictions. Second-level features are computed based upon the context data and list features based upon the list of proposed item recommendations and the corresponding predictions generated by the first-level machine learning model. A second-level machine learning model is evaluated using the second-level features to generate a prediction of user behavior in relation to the list of proposed item recommendations. A personalized list of item recommendations is provided based upon the prediction generated by the second-level machine learning model.