Patent attributes
Various aspects described herein relate to a machine learning based signal recovery. In one example, a computer-implemented method of noise contaminated signal recovery includes receiving, at a server, a first signal including a first portion and a second portion, the first portion indicative of data collected by a plurality of sensors, the second portion representing noise; performing a first denoising process on the first signal to filter out the noise to yield a first denoised signal; applying a machine learning model to determine a residual signal indicative of a difference between the first signal and the first denoised signal; and determining a second signal by adding the residual signal to the first denoised signal, the second signal comprising (i) signals of the first portion with higher magnitudes than the noise in the second portion, and (ii) signals of the first portion having lower magnitudes than the noise in the second portion.