Patent attributes
Existing methods for analyzing person-specific ‘connectomes’ are not computationally equipped for scalable, flexible, and integrated processing across multiple network resolutions and drawing from disparate data modalities-a major roadblock to utilizing ensembles and hierarchies of connectomes to solve person-specific machine-learning problems. The processes implemented in software described herein consists of an end-to-end pipeline for deploying ensembles and hierarchies of network-generating workflows that can utilize multimodal, person-specific data to sample networks, extracted from that data, across a grid of network-defining hyperparameters. In essence, this pipeline enables users to perform ensemble sampling of connectomes for given individual(s) based on any input phenotypic datatype, constructed from any data modality or hierarchy of modalities at any scale, and based on any set of network-defining hyperparameters.