Techniques for fingertip design are disclosed that leverage how most grasp contacts can share a few classes of local geometries. In order to maximize the contact areas for achieving more robust grasps, contact primitives, which represent a set of contacts of similar local geometries, are identified. A uniform cost algorithm, which can be formulated as a decision making process in a tree structure, can be utilized to cluster a set of example grasp contacts into a finite set of one or more contact primitives. Fingertips can be designed by optimization to match the local geometry of each contact primitive, and then fingertips can be 3D printed using soft materials to compensate for optimization residuals. For novel objects, an approach to generate grasp contacts that match the fingertip geometries while together forming stable grasps can be utilized.