Patent attributes
A novel holographic transport and communication room system utilizes a single red-green-blue (RGB)-depth (RGB-D) camera to capture the motion of a dynamic target, which is required to rotate around the RGB-D camera, instead of capturing three-dimensional volume of the dynamic target conventionally with a plurality of multi-angle cameras positioned around the dynamic target. The captured 3D volume of the dynamic target subject undergoes relighting, subject depth calculations, geometrical extrapolations, and volumetric reconstructions in a machine-learning graphical transformation feedback loop to synthesize a refined real-time hologram. The resulting hologram in one holographic room system is shared with other users occupying other holographic room systems equipped with similar holographic capabilities for live bilateral or multilateral holographic visualization and collaboration. Preferably, each holographic room system also integrates a mixed-reality content synthesis table for real-time remote participant collaboration in manipulating holographic contents and a one-to-one ratio life-size holographic display and capture tubular device.