A method of inverse reinforcement learning for estimating cost and value functions of behaviors of a subject includes acquiring data representing changes in state variables that define the behaviors of the subject; applying a modified Bellman equation given by Eq. (1) to the acquired data: q(x)+gV(y)−V(x)=−ln{pi(y|x))/(p(y|x)} (1) where q(x) and V(x) denote a cost function and a value function, respectively, at state x, g represents a discount factor, and p(y|x) and pi(y|x) denote state transition probabilities before and after learning, respectively; estimating a density ratio pi(y|x)/p(y|x) in Eq. (1); estimating q(x) and V(x) in Eq. (1) using the least square method in accordance with the estimated density ratio pi(y|x)/p(y|x), and outputting the estimated q(x) and V(x).