A mixed-domain circuit has a differential pair of Digital-to-Time Converters (DTCs), one receiving a reference clock and the other receiving a feedback clock. A Time-to-Digital Converter (TDC) compares outputs from the differential pair of DTCs and generates a digital error value that controls a digital loop filter that controls a Digitally-Controlled Oscillator (DCO) that generates an output clock. A Multi-Modulus Divider (MMD) generates the feedback clock. An accumulated modulation from a delta-sigma modulator is compared to the digital error value by a Least-Mean Square (LMS) correlator to adjust supply voltage or current sources in the pair of DTCs to compensate for errors. A capacitor in each DTC has a charging time adjusted by the accumulated modulation. The DTC can be reduced to a Time-to-Voltage Converter (TVC) and the analog voltages on the capacitors input to an Analog-to-Digital Converter (ADC) to generate the digital error value.