A method of evaluating secrets in a computer system's trusted execution environment, wherein after evaluation of secrets, a securely stored encryption key is either retrieved or deleted upon entering corresponding secret (password, graphical password, biometric information, data sequence, security token, etc.) or secrets. Deletion of the encryption key can happen in a verifiable manner or in a non-verifiable manner. If a storage is encrypted with the encryption key, deletion of the encryption key makes the encrypted storage irreversibly undecryptable, while retrieval of the key permits decryption of the storage. Two encryption keys can be used to encrypt two separate storages, and then securely stored and processed in the trusted execution environment. Each of the two encryption keys can be retrieved using one or more associated secrets (passwords, etc.), and one or more other secrets would delete the encryption key associated with a preselected storage. During sleep-wake event a computer system's memory can be encrypted with a symmetric key, and the symmetric key can be secured by encrypting with a public encryption key. Corresponding private key is retrieved to decrypt the symmetric key upon evaluation of associated password (secret) in trusted execution environment, while the private key is deleted upon evaluation of one or many preselected deletion password (secret) leaving the encrypted memory undecryptable.