Patent 10430825 was granted and assigned to Adobe on October, 2019 by the United States Patent and Trademark Office.
A digital medium environment is described to recommend advertisements using ranking functions. A ranking function is configured to compute a score by applying a user context vector associated with a user to individual ranking weight vectors associated with advertisements, and provide the advertisement with the highest score to the user. In order to learn the ranking weight vectors for the ranking function, training data is obtained that includes user interactions with advertisements during previous sessions as well as user context vectors. The ranking weight vectors for the ranking function associated with each advertisement can then be learned by controlling the score generated by the ranking function to be higher for positive interactions than the negative interactions. To do so, the ranking weight vectors may be learned by optimizing an area under the curve ranking loss (AUCL) for the ranking function.