Patent 10270788 was granted and assigned to Netskope on April, 2019 by the United States Patent and Trademark Office.
The technology disclosed relates to machine learning based anomaly detection. In particular, it relates to constructing activity models on per-tenant and per-user basis using an online streaming machine learner that transforms an unsupervised learning problem into a supervised learning problem by fixing a target label and learning a regressor without a constant or intercept. Further, it relates to detecting anomalies in near real-time streams of security-related events of one or more tenants by transforming the events in categorized features and requiring a loss function analyzer to correlate, essentially through an origin, the categorized features with a target feature artificially labeled as a constant. It further includes determining an anomaly score for a production event based on calculated likelihood coefficients of categorized feature-value pairs and a prevalencist probability value of the production event comprising the coded features-value pairs.