Gang migration refers to the simultaneous live migration of multiple Virtual Machines (VMs) from one set of physical machines to another in response to events such as load spikes and imminent failures. Gang migration generates a large volume of network traffic and can overload the core network links and switches in a datacenter. In this paper, we present an approach to reduce the network overhead of gang migration using global deduplication (GMGD). GMGD identifies and eliminates the retransmission of duplicate memory pages among VMs running on multiple physical machines in the cluster. The design, implementation and evaluation of a GMGD prototype is described using QEMU/KVM VMs. Evaluations on a 30-node Gigabit Ethernet cluster having 10GigE core links shows that GMGD can reduce the network traffic on core links by up to 65% and the total migration time of VMs by up to 42% when compared to the default migration technique in QEMU/KVM. Furthermore, GMGD has a smaller adverse performance impact on network-bound applications.