In a hand exoskeleton device, according to a three-layered sliding spring mechanism, the motion of the device is changed by a single drive mechanism to transmit power to the metacarpophalangeal, proximal and distal interphalangeal joints of a human finger, thereby enabling support of the daily activity motions of the finger. According to the hand exoskeleton device, when compared with a conventional device, there can be realized a device which is small in size and weight and is capable of supporting the gripping motions of the human finger. The hand exoskeleton device is characterized in that the three joints of the finger can be bent and extended by the single drive mechanism and it can transmit large drive power. Further, the device body is flexible, thereby enabling safe movement.