SBIR/STTR Award attributes
In the proposed Phase II STTR program, QuesTek Innovations LLC will further develop and mature improved part-scale additive manufacturing (AM) process models. Building on the success of Phase I efforts on modeling laser powder bed fusion (LPBF) of Inconel 625 (IN625), QuesTek partnering with Northwestern University will expand their proof-of-concept tools to higher length scales and new materials. Professor Gregory Wagner, Northwestern University PI, will continue to focus on improved multiscale thermal history models to achieve higher accuracy while maintaining computational efficiency. QuesTek will continue to develop their grain growth algorithm by achieving higher computational efficiency as well as higher accuracy through the increased usage of physics-informed predictions.The objective of the Phase II program is three-fold: continue to improve on the efficiency and accuracy of the proof-of-concept tools developed in Phase I, demonstrate extensibility of the tools by applying them to a new material Ti-6Al-4V (Ti64), and integrate all developed tools into a cohesive software framework. Further, model results will be validated by a robust AM study aimed at obtaining 3D grain structure data as a function of different printing parameters, strategies, and build geometries for both LPBF-processed IN625 and Ti64.QuesTek will utilize its expertise in the field of ICME to lead the overall STTR program with the objective of guiding the standardization and qualification of AM processing using an innovative tool set with improved accuracy and efficiency of as-printed predictions, linking the tool to QuesTekrsquo;s already mature post-printing processing simulations to enable complete and robust predictions of AM parts from-powder-to-part.