SBIR/STTR Award attributes
A quantum network based on quantum entanglement is a potentially revolutionary technology with anticipated applications, such as ldquo;blindrdquo; quantum computing and secure communications, as well as a host of yet-to-be-discovered uses. To realize the true potential of quantum entanglement, scientists and engineers need standardized and reliable hardware to transmit and receive entangled quantum states of light. A key component of this network will be entanglement distributions transceivers. These components will both generate pairs of entangled photons that can be sent to other nodes within the network as well as receive and analyze photons from other transceiver units. While fiber-based networks may be useful in the near-term, placing such transceivers within a satellite-based networkmdash;which is capable of long-distance networkingmdash;represents a major milestone for the development of quantum information technologies. Consequently, such components should be low size, weight, and power (SWaP) to be compatible with satellite transmission. To address this challenge, PSI will team with Prof. Paul Kwiat (University of Illinois, Urbana Champaign, UIUC) and develop a Doppler-compensated Integrated Photonic Time-bin Entanglement Transceiver using a photonic integrated circuit platform. This transceiver will become a standardized component that will facilitate the exploration of quantum-entanglement applications both terrestrially and for space-based missions.