SBIR/STTR Award attributes
Solar Sail Tubular Mast (SSTM) is a lightweight version of Opterusrsquo; patented High Strain Composite (HSC) Trussed Collapsible Tubular Mast (T-CTM). SSTM is a high-performance truss of tape-springs with structural mass efficiency twice that of trusses of solid rods (e.g. coilable longeron masts) and four times better than traditional non-trussed CTMs. SSTM booms are inherently low cost because they are fabricated using automated and mold-based processes with minimal touch labor. Opterus is currently proving out similar booms (optimized for high load applications) at the 20m (65 ft) length scale using the same materials, tooling, curing, and fabrication equipment that will be used here. Processes are only limited in length by the facility, currently 120m (400 ft). This effort will optimize and develop booms with a linear mass density of less than 50 grams per meter while maintaining the stiffness and strength to support 10,000 m2 and larger high performance sail systems. SSTM provides a lower cost and lower risk solution by avoiding spin deployment and stabilization complexities. The complexity, challenge, and risk of cable stays (guywires) are similarly not needed with SSTM. Prototype booms will be designed, fabricated, and tested. SSTM is enabling for the next generation of 10,000 m2 large class solar sails for multiple heliophysics missions including HISM (High Inclination Solar Mission), SPI (Solar Polar Imager), and next generation space weather monitoring missions. SSTM can also enable a faster transit to deep space, which is needed for the Interstellar Probe Mission.