SBIR/STTR Award attributes
Urban Air Mobility (UAM) vehicles are a transportation technology with potentially transformative potential for how passengers and goods are ferried in urban environments. A critical barrier to UAM adoption is ensuring safety of passengers in hard-landing and crash scenarios. Our proposed solution is to develop an advanced materials system that is light-weight, highly energy-absorbent/dissipative, and capable of out-performing current solutions by providing multi-/omnidirectional impact protection. Current solutions typically fail in this latter regard, and instead trade-off between the amount of energy absorbed and the directional sensitivity to a given impact. Our approach circumvents this trade-off by utilizing Origami-Inspired Mechanical Metamaterials (OIMMs), which are a new class of advanced materials systems. Essentially, OIMMs are designed by embedding repeated geometric patterns into a base material to augment and enhance the base materialrsquo;s properties. The result is a metamaterial that is lighter, stronger, and more multi-functional. Our SBIR Phase I effort was successful at developing OIMMs that satisfy the technical criteria desired in energy absorbing devices without making the trade-offs typically found in such systems.nbsp; In this SIBR Phase II proposal, we seek to build on the success of our feasibility study to: (1) further validate the properties of our OIMM structures in empirical tests; (2) determine a pathway for scalable manufacturing of high-performance OIMMs; and (3) demonstrate scalable manufacturing of OIMMs for UAM vehicle crash protection. If successful, our deliverables will include new IP that we will commercialize in the trucking/semi-trailer manufacturing industry, where OIMMs have the potential to displace high-density foams currently used in the construction of semi-trailers. Our commercial success in ground-based transportation will ensure OIMM crash protection materials are available for the UAM market as it continues to mature.