The Many-Worlds Interpretation (MWI) of quantum mechanics holds that there are many worlds which exist in parallel at the same space and time as our own. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics. The MWI provides a solution to the measurement problem of quantum mechanics. MWI is now considered a mainstream interpretation along with the other decoherence interpretations, collapse theories (including the Copenhagen interpretation), and hidden variable theories such as Bohmian mechanics. MWI is also called the relative state formulation or the Everett interpretation, after physicist Hugh Everett, who first proposed it in 1957. Bryce DeWitt popularized the formulation and named it many-worlds in the 1960s and 1970s.
The concept of a world in the MWI is based on the layman's conception of a world; however, several features are different. The definition of the world as everything that exists does not hold in the MWI. "Everything that exists" is the Universe, and there is only one Universe. The Universe incorporates many worlds similar to the one the layman is familiar with. A layman believes that our present world has a unique past and future. According to the MWI, a world defined at some moment of time corresponds to a unique world at a time in the past, but to a multitude of worlds at a time in the future.
The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wavefunction collapse. This implies that all possible outcomes of quantum measurements are physically realized in some "world" or universe. In contrast to some other interpretations, such as the Copenhagen interpretation, the evolution of reality as a whole in MWI is rigidly deterministic. This interpretation resolves some paradoxes of quantum theory, such as the EPR paradox and Schrödinger's cat, since every possible outcome of a quantum event exists in its own universe.
The primary argument against the MWI is that the only meaning for probability is an ignorance probability, but there is no relevant information that an observer who is going to perform a quantum experiment is ignorant about. The quantum state of the Universe at one time specifies the quantum state at all times. If a quantum experiment is to be done with two possible outcomes such that standard quantum mechanics predicts probability 1/3 for outcome A and 2/3 for outcome B, then, according to the MWI, both the world with outcome A and the world with outcome B will exist.
The important part of the Probability Postulate is the supervenience of subjective probability on the measure of existence. Given this supervenience, the proportionality follows naturally from the following argument. By the assumption, if after a quantum measurement all the worlds have equal measures of existence, the probability of a particular outcome is simply proportional to the number of worlds with this outcome. The measures of existence of worlds are, in general, not equal, but the experimenters in all the worlds can perform additional specially tailored auxiliary measurements of some variables such that all the new worlds will have equal measures of existence. The experimenters should be completely indifferent to the results of these auxiliary measurements: their only purpose is to split the worlds into "equal-weight" worlds. Then, the additivity of the measure of existence yields the Probability Postulate.