SBIR/STTR Award attributes
The Department of Energy Office of Fusion Energy Sciences is seeking the development of wrap-able radiation-resistant electrical insulators for superconducting magnet coils used in fusion energy reactor systems. These insulators must: (1) exhibit low gas generation under irradiation, (2) have higher pot life, and (3) exhibit attributes of insulation systems with high bond and higher strength and flexibility in shear. These insulators must demonstrate considerable cost reduction through the use of cost-effective materials and fabrication processes. During the proposed project, the company will develop metal oxide nanoparticle and organic polymer composite-based wrap-able, radiation-resistant electrical insulators using a hybrid sol- gel technology. Innovations will be incorporated to achieve radiation resistance, high mechanical strength, high thermal stability, and high chemical resistance. Overall, the proposed technology will improve both radiation-resistance and electrical insulation for superconducting magnet coils used in fusion reactors helping to achieve DOE program goals for fusion energy reactor systems. In Phase I, the project team will formulate, characterize, and demonstrate hybrid metal oxide nanoparticle-organic polymer composite materials as a radiation-resistant electrical insulator. Several compositions will be prepared and evaluated for radiation tolerance, including electron, gamma and neutron exposure, and radiation-induced gas evolution rate, thermal and mechanical performance. This effort will position the company to transition the insulating material to Phase II development. The metal oxide nanoparticle-incorporated organic polymer composite coating proposed for DOE advanced radiation and electrical insulators can be adapted for use in medical devices for cancer therapy, medical imaging systems, high-field accelerator magnets motors/generators in extreme conditions (space missions, military and commercial satellites, military operations in cold climates), and aerospace equipment.