Other attributes
Coalbed methane (CBM or coal-bed methane), coalbed gas, coal seam gas (CSG), or coal-mine methane (CMM) is a form of natural gas extracted from coal beds.[3] In recent decades it has become an important source of energy in United States, Canada, Australia, and other countries.
The term refers to methane absorbed into the solid matrix of the coal. It is called 'sweet gas' because of its lack of hydrogen sulfide. The presence of this gas is well known from its occurrence in underground coal mining, where it presents a serious safety risk. Coalbed methane is distinct from a typical sandstone or other conventional gas reservoir, as the methane is stored within the coal by a process called adsorption. The methane is in a near-liquid state, lining the inside of pores within the coal (called the matrix). The open fractures in the coal (called the cleats) can also contain free gas or can be saturated with water.
Unlike much natural gas from conventional reservoirs, coalbed methane contains very little heavier hydrocarbons such as propane or butane, and no natural-gas condensate. It often contains up to a few percent carbon dioxide. Coalbed methane is generally formed due to thermal maturation of kerogen and organic matter. However, coal seams with regular groundwater recharge see methane generated by microbial communities living in situ.
History
Coalbed methane grew out of venting methane from coal seams. Some coal beds have long been known to be "gassy," and as a safety measure, boreholes were drilled into the seams from the surface, and the methane allowed to vent before mining.
Coalbed methane as a natural-gas resource received a major push from the US federal government in the late 1970s. Federal price controls were discouraging natural gas drilling by keeping natural gas prices below market levels; at the same time, the government wanted to encourage more gas production. The US Department of Energy funded research into a number of unconventional gas sources, including coalbed methane. Coalbed methane was exempted from federal price controls, and was also given a federal tax credit.
In Australia, commercial extraction of coal seam gas began in 1996 in the Bowen Basin of Queensland.
Reservoir properties
Gas contained in coal bed methane is mainly methane and trace quantities of ethane, nitrogen, carbon dioxide and few other gases. Intrinsic properties of coal as found in nature determine the amount of gas that can be recovered.
Porosity
Coalbed methane reservoirs are considered as a dual-porosity reservoirs. Dual porosity reservoirs are reservoirs in which porosity related to cleats (natural fractures) are responsible for flow behavior and reservoir porosity of the matrix is responsible for the storage of gas. The porosity of a coalbed methane reservoir can vary from 10%-20 %; However, the cleat porosity of the reservoir is estimated to be in the range of 0.1%-1 %
Adsorption capacity
Adsorption capacity of coal is defined as the volume of gas adsorbed per unit mass of coal usually expressed in SCF (standard cubic feet, the volume at standard pressure and temperature conditions) gas/ton of coal. The capacity to adsorb depends on the rank and quality of coal. The range is usually between 100 and 800 SCF/ton for most coal seams found in the US. Most of the gas in coal beds is in the adsorbed form. When the reservoir is put into production, water in the fracture spaces is pumped off first. This leads to a reduction of pressure enhancing desorption of gas from the matrix.
Fracture permeability
As discussed before, the fracture permeability acts as the major channel for the gas to flow. The higher the permeability, the higher the gas production. For most coal seams found in the US, the permeability lies in the range of 0.1–50 milliDarcys. The permeability of fractured reservoirs changes with the stress applied to them. Coal displays a stress-sensitive permeability and this process plays an important role during stimulation and production operations[9][citation needed]. Fracture permeability in Coalbed methane reservoir tends to increase with depletion of gas; in contrast to conventional reservoirs. This unique behavior is because of shrinking of coal, when methane is released from its matrix, which results in opening up of fractures and increased permeability. It is also believed that due to shrinkage of coal matrix at lower reservoir pressures, there is a loss of horizontal stress in the reservoir which induces in-situ failure of coal. Such a failure has been attributed to sudden decrease in the fracture permeability of the reservoir.
Thickness of formation and initial reservoir pressure
The thickness of the formation may not be directly proportional to the volume of gas produced in some areas.
For example, it has been observed in the Cherokee Basin in Southeast Kansas that a well with a single zone of 1 to 2 feet (0.3 to 0.6 m) of pay can produce excellent gas rates, whereas an alternative formation with twice the thickness can produce next to nothing. Some coal (and shale) formations may have high gas concentrations regardless of the formation's thickness, probably due to other factors of the area's geology.
The pressure difference between the well block and the sand face should be as high as possible as is the case with any producing reservoir in general.
Other properties
Other affecting parameters include coal density, initial gas-phase concentration, critical gas saturation, irreducible water saturation, relative permeability to water and gas at conditions of Sw = 1.0 and Sg = 1-Sw irreducible respectively.
Extraction
To extract the gas, a steel-encased hole is drilled into the coal seam 100 to 1,500 metres (330 to 4,920 ft) below ground. As the pressure within the coal seam declines due to natural production or the pumping of water from the coalbed, both gas and produced water come to the surface through tubing. Then the gas is sent to a compressor station and into natural gas pipelines. The produced water is either reinjected into isolated formations, released into streams, used for irrigation, or sent to evaporation ponds. The water typically contains dissolved solids such as sodium bicarbonate and chloride but varies depending on the formation geology.
Coalbed methane wells often produce at lower gas rates than conventional reservoirs, typically peaking at near 300,000 cubic feet (8,500 m3) per day (about 0.100 m³/s), and can have large initial costs. The production profiles of CBM wells are typically characterized by a "negative decline" in which the gas production rate initially increases as the water is pumped off and gas begins to desorb and flow. A dry CBM well is similar to a standard gas well.
The methane desorption process follows a curve (of gas content vs. reservoir pressure) called a Langmuir isotherm. The isotherm can be analytically described by a maximum gas content (at infinite pressure), and the pressure at which half that gas exists within the coal. These parameters (called the Langmuir volume and Langmuir pressure, respectively) are properties of the coal, and vary widely. A coal in Alabama and a coal in Colorado may have radically different Langmuir parameters, despite otherwise similar coal properties.
As production occurs from a coal reservoir, the changes in pressure are believed to cause changes in the porosity and permeability of the coal. This is commonly known as matrix shrinkage/swelling. As the gas is desorbed, the pressure exerted by the gas inside the pores decreases, causing them to shrink in size and restricting gas flow through the coal. As the pores shrink, the overall matrix shrinks as well, which may eventually increase the space the gas can travel through (the cleats), increasing gas flow.
The potential of a particular coalbed as a CBM source depends on the following criteria. Cleat density/intensity: cleats are joints confined within coal sheets. They impart permeability to the coal seam. A high cleat density is required for profitable exploitation of CBM. Also important is the maceral composition: maceral is a microscopic, homogeneous, petrographic entity of a corresponding sedimentary rock. A high vitrinite composition is ideal for CBM extraction, while inertinite hampers the same.
The rank of coal has also been linked to CBM content: a vitrinite reflectance of 0.8–1.5% has been found to imply higher productivity of the coalbed.
The gas composition must be considered, because natural gas appliances are designed for gas with a heating value of about 1,000 BTU (British thermal units) per cubic foot, or nearly pure methane. If the gas contains more than a few percent non-flammable gases such as nitrogen or carbon dioxide, either these will have to be removed or it will have to be blended with higher-BTU gas to achieve pipeline quality. If the methane composition of the coalbed gas is less than 92%, it may not be commercially marketable.