Golden Recursion Inc. logoGolden Recursion Inc. logo
Advanced Search
Clean technology

Clean technology

A process, product, or service which reduces negative impacts on the environment while offering competitive returns for investors and customers. Clean technologies provide solutions which reduce energy usage, use sustainable resources, or protect the environment.


Clean technology (or cleantech) is an umbrella term for a class of technologies and services that reduce negative environmental impacts through energy efficiency, sustainability, and environmental protections. Clean technologies and products are expected to be competitive with and even superior to conventional technologies and products while reducing costs, inputs, energy consumption, waste, or pollution and offer investors the possibility for significant return on their investment. Clean Technology has increased as an investment sector since 2000 with the rise of awareness of human impact on the natural environment.

The term has been often differentiated from "green" or "environmental" technologies, with the idea of "green" or "environmental" technologies covering regulatory-driven technologies (such as smokestack scrubbers) with limited opportunities for returns. Greentech remains a term often used interchangeably with cleantech.

Although strict definitions of what is included in the clean technology sector differs among industry participants, the most cited definition coming from the Cleantech Group. This definition focuses on investment and includes water purification, eco-efficient production techniques, renewable energy, green technology, materials and chemicals, sustainable and renewable agriculture, and sustainable business.

The term cleantech has origins in the venture capital investment community and grew to include industries such as solar, wind, water purification and biofuels. Cleantech now includes investment asset class, technology and business sectors which provide products and services related to clean energy, environment, sustainable or “green”.

The Cleantech Group (formerly Cleantech Venture Network), energy consultancy Clean Edge, the book Cleantech Revolution and Cleantech blogs helped make the term cleantech popular. Cleantech is the third largest venture capital investment sector after IT and biotech. Before the term became popular around 2005, cleantech referred to equipment and supplies related to dry cleaning.

While greentech is sometimes used interchangeably with cleantech, The Cleantech Group differentiates these terms as follows. Greentech or envirotech are regulatory driven technologies, such as smokestack scrubbers, which have limited attractive returns on investment. Cleantech is driven by productivity-based purchasing and offers better returns on investment. Other definitions of cleantech specify that products are competitive in that they may provide superior performance at reduced cost or require less resources.

Cleantech can be divided into the following industry segments: Energy Generation, Energy Storage, Energy Infrastructure, Energy Efficiency, Transportation, Water and Wastewater, Air and Environment, Materials, Manufacturing/Industrial, Agriculture, Recycling and Waste.

Resources and Environment
Carbon capture and storage/sequestration

Carbon capture and storage/sequestration is the process of capturing carbon dioxide formed during power generation and industrial processes and storing (sequestring) it so that the carbon dioxide is not emitted into the atmosphere. Carbon dioxide is often stored underground in depleted oil and gas fields or in deep saline aquifers. Other companies are using the carbon dioxide for commercial applications.

Carbon conversion

Carbon conversion relates to the use of carbon dioxide as a raw material for the production of urea, methanol, polycarbonates, cyclic carbonates and specialty chemicals. Other uses of carbon as a raw material have included plastics, fibers, and rubber.

Environmental monitoring

Environmental monitoring is a tool or system used to assess environmental trends, and support policy development and implementation. These tools are used to gain information that can be reported to policymakers, forums and the public. Over the past decades, only a few European and Central Asian countries have maintained monitoring activities, particularly the monitoring of urban air pollution. Solid and hazardous waste monitoring has been weak, and as a result industrial emissions have not been carefully monitored before recently.

Direct air capture

Direct air capture is a technology used to capture CO2 directly from the atmosphere.

Water and Air

The goal of clean water and air technology is to help reduce pollutants in the natural resources and ensure higher quality in both. Clean water and air technology relies on filtration systems, quality assurance and monitoring of businesses to ensure pollutants aren't let out into the environment.

Mining Industry

Clean mining has multiple unique challenges, especially considering the regions which tend to have major mining economies. Third world countries account for most of the mining in the world, and tend to do so in areas with large amounts of biological diversity, freshwater and forests. Key obstacles for clean mining includes finding cost-effective management instruments and tools, reclamation and re-habilitation of affected land, treatment and stabilization of soil, water management systems, gas emissions, energy use and waste management.

Wastewater treatment

Wastewater treatment is the process of treating wastewater from various industries and municipalities with an acceptable environmental impact. The process works to return the treated water to the water cycle. Clean technology companies in the wastewater treatment industry work to create less environmentally impacting treatment processes and use for the effluent and waste.

Waste management

Clean waste management involves treating and dealing with municipal and commercial waste water, solid waste and excess material from business processes. Clean solid-waste management addresses a number of possibilities including gasification, pyrolysis, plasma arc, waste-to-energy, anaerobic digestion, mixed waste processing and plastic to fuel alternatives.

Materials and Chemicals
Green Concrete

Green Concrete (or Clean Concrete) is a technological response to the manufacturing and carbon demands for conventional concrete. These technologies include reduced-carbon manufacturing, carbon sequestering concrete, concrete recycling, environmentally-friendly concretes, mixed-materials concretes and concrete alternatives.

Reducing carbon emissions for the manufacturing of concrete includes the greater efficiency of the conventional concrete industry, technologies capturing and including carbon dioxide from the manufacturing process and mixing it in the concrete, recycling concrete, or the recycling of other waste or cast-off materials (such as fly ash, steel slag, or recycled glass) into the manufacturing of concrete.

Environmentally-friendly concretes are conventional concretes mixed or manufactured to provide an environmental result. The two best examples of these are insulated concretes and pervious concretes. Insulated concretes are considered environmentally-friendly for their energy efficiency qualities in larger buildings allowing for less energy usage in heating and cooling. Pervious concretes allow water to pass through them, reducing wash-out of nearby soil and reducing water build up and the possibility of flooding.


Bioplastics are plastics made from renewable biomass sources, including corn, potatoes, wood, food waste, agricultural by-products, and lobster shells. The name bioplastic is also applied to biodegradable plastics which break down into natural substances such as water, carbon dioxide, and compost. The two most common bioplastics are polylactic acid (PLA) and polyhydroxyalkanoates (PHA).

Textiles and Materials

Clean technology in the Textile and Material industry involves reducing environmental impact in a number of processes and resources, including water, fiber resources, solid waste and chemical waste. Chemical waste in this industry includes dyes, salt, glues, laser engraving runoff, transfer materials, ink and more. Clean technology aims to monitor and reduce multiple waste and chemical processes including dye baths, excess fabrics, machine operations, boilers, ovens, storage tanks and treatment tanks.

Energy and Power

Clean energy and power is a large field dealing with environmental stability in multiple sub-industries including gas, petroleum, coal, electric and other energy mediums.


First generation biofuels include ethanol and plant oil produced from sugar and starch. Second generation biofuels are produced from non-food biomass called lignocellulose and are called cellulosic biofuels. Third generation biofuels are derived from algae and produce feedstock as well as fuel. Fourth generation biofuels are electrofuels or photobiological solar fuels.

Petrochemical processing alternatives

Petrochemical processing alternative technology revolves around finding cleaner and less harmful solutions to petrochemical energy, from distribution to drilling. Alternatives include biodiesel, ethanol, hydrogen and others.

Coal and alternative uses

Transportation and Logistics

Transportation is a major driving factor of environmental waste, producing about 1.8 gigatons of carbon dioxide per year in the US. The range of processes and vehicles used in transportation and the logistics sector make it an important target for clean energy companies and upcoming technologies.

Agriculture and Food

Clean agriculture and food technology aims to meet consumers' demands for food while minimizing chemical input, monitoring environmental stress and developing ways to promote safe and responsible systems to produce food.

Digital Agriculture/Digital Farming/Precision Agriculture
Clean technology associated business
Strategy, development and marketing support

Clean technology involves targeting consumers, businesses and investors for awareness and support into the sector. Sales involve balancing environmental protections, solutions and alternative spending with cost and profit margins.

Clean technology investment

Cleantech is one of the fastest moving sectors in the world, with many large corporations joining and startups forming to offer solutions. As a result, clean technology venture capitalism is growing rapidly as funding opportunities arise.

Clean technology ICOs
  • 3dP-Token
  • 4NEW
  • AQUA
  • BitLumens
  • CCET
  • CO2 Token
  • Crudecoin
  • Deneum
  • Earth Token
  • Energy Premier
  • Envion
  • Farad
  • GreenX
  • Grid Plus
  • HomeMine Token
  • KWHCoin
  • MegaWatt
  • MITO
  • Node
  • PLATIO Coin
  • Power Ledger
  • Pylon Network
  • RGS
  • Ri?X
  • ROX
  • SunCoin
  • SunContract
  • Synthestech
  • Titan Coin
  • Torus Token
  • WePower

Academic researchers and groups
Energy storage
Clean energy materials and technology


February 15, 2022
Work starts on New York’s first offshore wind project
September 23, 2020
California to ban all internal combustion engine vehicles by 2035.
September 3, 2020
With the shift toward electrification, decoupling remains key for driving decarbonization
September 3, 2020
United States Department of Energy Announces $29 Million in Fusion Energy Technology Development
September 3, 2020
Oil-field services speed adoption of clean energy technology as the coronavirus pandemic takes its toll on crude oil and natural gas businesses.
September 3, 2020
Breakthrough in Artificial Photosynthesis Lets Scientists Store The Sun's Energy as Fuel
September 2, 2020
Bloom Energy and SK E&C Announce 28-Megawatt Deployment of Fuel Cell Technology to Power South Korea's Historic Hwasung and Paju Cities
September 1, 2020
Total's energy diversification efforts target South Korean wind farms.
September 1, 2020
Wireless Device Produces Clean Fuel Using Artificial Photosynthesis
September 1, 2020
Solar outshines wind to become world's biggest new power source

Further Resources


Air conditioning technology is the great missed opportunity in the fight against climate change

James Temple


September 1, 2020

Breakthrough in Nuclear Fusion? - Prof. Dennis Whyte


February 25, 2016

Building Back Better by Fuelling Innovation in the Clean Energy Sector: Roundtable #6


May 27, 2020

Can Clean Tech Clean Up Our Future? (Full Program)

Commonwealth Club of California


February 13, 2017

Canadian clean energy opportunities


March 31, 2017



Golden logo
By using this site, you agree to our Terms & Conditions.