Brain-computer interface is a collection of topics, research organizations, companies, and technologies related to brain-computer interface (BCI) systems, also called brain-machine interface (BMI). These devices translate neuronal information into commands that can control software or hardware like computers or robotic devices.
A BCI relies on direct measures of brain activity, provides feedback to the user, is processed in real time, and relies on intentional control. BCIs measure central nervous system (CNS) activity, converting it into artificial output in order to replace, restore, enhance, supplement, or improve natural CNS output and changing the ongoing interactions between the CNS and the external and internal environment. BCI systems have applications in neurorehabilitation, assistive device technology, cognitive enhancement, and human-to-computer communication. BCIs are used for communication or control of external prosthetic devices in people living with conditions such as spinal cord injury, Amyotrophic Lateral Sclerosis (ALS), Locked-in Syndrome (LIS), and Multiple Sclerosis (MS). BCIs can be used for functional electrical stimulation of muscles in a paralyzed person or of peripheral nerves to restore bladder function. BCIs can monitor brain activity during prolonged demanding tasks and detect lapses of attention and alert the person. BCIs are used in research to study CNS function.