Biohybrid robotics (Bio-syncretic robotics)

Biohybrid robotics (Bio-syncretic robotics)

Biohybrid robotics combines engineered artificial structures and living bio-systems.

Edit ID  12143598 

Meredith Hanel
Meredith Hanel edited on 16 Sep, 2019
Edits made to:
Article (+25/-25 characters)

Biohybrid robotics combines engineered artificial structures and living bio-systems. The main motivation for biohybrid robots is to provide actuation using bio-hybrid actuators. Biohybrid robots may use bacteria or other motile cells. Actuators have also been based on explanted whole-muscle tissues, cardiomyocytes, optogeneticallyoptogenetically modified cardiomyocytes, insect self-contractile tissues and engineered skeletal muscle.


Researchers at University of Illinois developed soft robotic devices driven by neuromuscular tissue that triggers when stimulated by light using optogenetics, which was published in 2019 in PNAS. In 2014, the team developed self-propelled biohybrid swimming and walking biobots that uses cardiac muscle cells from rats, which beat on their own, as motors. Their swimming biobots were modeled after sperm, with a single tail. In the 2019 version, optogenetic neuron cells, derived from mouse stem cellsstem cells, were added to their device with two tails. The biobots self assemble since neurons advanced towards the muscle and formed neuromuscular junctions. The resulting neuromuscular tissue worked with their synthetic biobot skeletons. Muscle activity is controlled by neuron activity, which is controlled by exposure to light using optogenetics.

Golden logo
Text is available under the Creative Commons Attribution-ShareAlike 4.0; additional terms apply. By using this site, you agree to our Terms & Conditions.