Clinical Study attributes
Other attributes
Recent advances in machine learning and image processing techniques have shown that machine learning models can identify features unrecognized by human experts and accurately assess common measurements made in clinical practice. Echocardiography is the most common form of cardiac imaging and is routinely and frequently used for diagnosis. However, there is often subjectivity and heterogeneity in interpretation. Artificial intelligence (AI)'s ability for precision measurement and detection is important in both disease screening as well as diagnosis of cardiovascular disease. Cardiac amyloidosis (CA) is a rare, underdiagnosed disease with targeted therapies that reduce morbidity and increase life expectancy. However, CA is frequently overlooked and confused with heart failure with preserved ejection fraction. Some estimates suggest that CA can be as prevalence as 1% in a general population, with even higher prevalence in patients with left ventricular hypertrophy, heart failure, and other cardiac symptoms that might prompt echocardiography. AI guided disease screening workflows have been proposed for rare diseases such as cardiac amyloidosis and other diseases with relatively low prevalence but significant human impact with targeted therapies when detected early. This is an area particularly suitable for AI as there are multiple mimics where diseases like hypertrophic cardiomyopathy, cardiac amyloidosis, aortic stenosis, and other phenotypes might visually be similar but can be distinguished by AI algorithms. The investigators have developed an algorithm, termed EchoNet-LVH, to identify cardiac hypertrophy and identify patients who would benefit from additional screening for cardiac amyloidosis.