Log in
Enquire now
Twistronics

Twistronics

An approach to device engineering in which the twist angle between layers of 2D materials such as graphene affects their electronic, optical and mechanical properties.

OverviewStructured DataIssuesContributors

All edits by  Ralf Bamert 

Edits on 6 May, 2019
Ralf Bamert profile picture
Ralf Bamert
edited on 6 May, 2019
Edits made to:
Description (+165/-55 characters)
Topic thumbnail

Twistronics

A fundamentally new way to engineer electronics devices

A fundamentally new way to engineer electronics devices. By twisting layers of Graphene material properties change to allow for superconductivity at room temprature.

Edits on 4 May, 2019
Ralf Bamert profile picture
Ralf Bamert
edited on 4 May, 2019
Edits made to:
Description (+55 characters)
Article (+1760 characters)
Categories (+2 topics)
Related Topics (+3 topics)
Topic thumbnail

Twistronics

A fundamentally new way to engineer electronics devices

Article

Researchers at Columbia University in the US have developed a new device structure in which they can vary the "twist" angle between layers of 2D materials (such as graphene) and study how this angle affects their electronic, optical and mechanical properties. The measurements, which are carried out on a single structure rather than multiple ones (as was the case before), could advance the emerging field of "twistronics" - a fundamentally new approach to device engineering.

"Simply varying the angle between 2D material layers thus means that graphene can be tuned from being metallic to semiconducting. Indeed, researchers at the Massachusetts Institute of Technology (MIT) recently discovered that placing two layers of graphene together, but rotated relative to one another at the 'magic' angle of 1.1° turns the normally metallic material into a superconductor."

Achieving this variety of electronic properties in conventional materials normally requires changing their chemical composition. The ability to vary the electronic property of a 2D material simply by altering the twist angle between its layers is therefore a fundamentally new direction in device engineering, he adds.

"Until now, we have only studied graphene and boron nitride but there exists a large class of 2D materials that can be integrated with one another in similar ways. These materials can be metallic, insulating, semiconducting, magnetic and superconducting.

...

"At the most basic level, our study shows that there is a fundamentally new way to control these materials that just doesn't exist in conventional semiconductor heterostructures. It therefore opens the door to a whole new field of research in which material properties can be varied by simply twisting material layers."

"Initial topic creation"
Ralf Bamert profile picture
Ralf Bamert
created this topic on 4 May, 2019
Edits made to:
Topic thumbnail

 Twistronics

An approach to device engineering in which the twist angle between layers of 2D materials such as graphene affects their electronic, optical and mechanical properties.

Find more entities like Twistronics

Use the Golden Query Tool to find similar entities by any field in the Knowledge Graph, including industry, location, and more.
Open Query Tool
Access by API
Golden Query Tool
Golden logo

Company

  • Home
  • Press & Media
  • Blog
  • Careers
  • WE'RE HIRING

Products

  • Knowledge Graph
  • Query Tool
  • Data Requests
  • Knowledge Storage
  • API
  • Pricing
  • Enterprise
  • ChatGPT Plugin

Legal

  • Terms of Service
  • Enterprise Terms of Service
  • Privacy Policy

Help

  • Help center
  • API Documentation
  • Contact Us
By using this site, you agree to our Terms of Service.