Patent attributes
A phased array antenna is provided having a plurality of phase shifter devices for phase shifting and beam steering a radiated beam of the phased array antenna. The plurality of phase shifter devices are interconnected with an interconnect structure comprising a plurality of linear array substrate slats. Each linear array substrate slat includes a plurality of radiating elements formed using first and second metal layers of the substrate slat, a plurality of phase shifter devices and a common RF feed conductor for the plurality of radiating elements. The common RF feed conductor is formed on a third metal layer of the substrate slat that is disposed between the first and second metal layers. The common RF feed conductor is configured to include a single location for electrical connections to receive RF signals for the plurality of radiating elements. The phased array antenna also includes bias/control conductors applied to selected areas of the third metal layer, a fourth metal layer applied over the second metal layer and a shielding metal layer applied on the fourth metal layer. The bias/control conductors are configured to include a single location for electrical connections to receive bias voltages and control signals. The fourth metal layer includes circuit connections from the bias/control circuitry to the plurality of phase shifter devices. Each phase shifter device is attached to a radiating element via a mounting location on the shielding metal layer. Accordingly, a phased array antenna interconnect structure is provided that reduces the number of electrical connections required to provide RF signals and bias/control signals to multiple radiating elements and phase shifters, respectively, of the phased array antenna and provides a cost effective phased array antenna architecture that has a single locus of electrical connection for RF and bias control signals embedded in a multi-layer linear array or slat substrate of the phased array antenna.

