Log in
Enquire now
‌

Concrete Syntax with Black Box Parsers

OverviewStructured DataIssuesContributors

Contents

Is a
‌
Academic paper
0

Academic Paper attributes

arXiv ID
1902.005430
arXiv Classification
Computer science
Computer science
0
Publication URL
arxiv.org/pdf/1902.00543v10
Publisher
ArXiv
ArXiv
0
DOI
doi.org/10.48550/ar...02.005430
Paid/Free
Free0
Academic Discipline
Computer science
Computer science
0
Programming language
Programming language
0
Submission Date
February 1, 2019
0
Author Names
Jurgen Vinju0
Tijs van der Storm0
Rodin Aarssen0
Paper abstract

Context: Meta programming consists for a large part of matching, analyzing, and transforming syntax trees. Many meta programming systems process abstract syntax trees, but this requires intimate knowledge of the structure of the data type describing the abstract syntax. As a result, meta programming is error-prone, and meta programs are not resilient to evolution of the structure of such ASTs, requiring invasive, fault-prone change to these programs. Inquiry: Concrete syntax patterns alleviate this problem by allowing the meta programmer to match and create syntax trees using the actual syntax of the object language. Systems supporting concrete syntax patterns, however, require a concrete grammar of the object language in their own formalism. Creating such grammars is a costly and error-prone process, especially for realistic languages such as Java and C++. Approach: In this paper we present Concretely, a technique to extend meta programming systems with pluggable concrete syntax patterns, based on external, black box parsers. We illustrate Concretely in the context of Rascal, an open-source meta programming system and language workbench, and show how to reuse existing parsers for Java, JavaScript, and C++. Furthermore, we propose Tympanic, a DSL to declaratively map external AST structures to Rascals internal data structures. Tympanic allows implementors of Concretely to solve the impedance mismatch between object-oriented class hierarchies in Java and Rascals algebraic data types. Both the algebraic data type and AST marshalling code is automatically generated. Knowledge: The conceptual architecture of Concretely and Tympanic supports the reuse of pre-existing, external parsers, and their AST representation in meta programming systems that feature concrete syntax patterns for matching and constructing syntax trees. As such this opens up concrete syntax pattern matching for a host of realistic languages for which writing a grammar from scratch is time consuming and error-prone, but for which industry-strength parsers exist in the wild. Grounding: We evaluate Concretely in terms of source lines of code (SLOC), relative to the size of the AST data type and marshalling code. We show that for real programming languages such as C++ and Java, adding support for concrete syntax patterns takes an effort only in the order of dozens of SLOC. Similarly, we evaluate Tympanic in terms of SLOC, showing an order of magnitude of reduction in SLOC compared to manual implementation of the AST data types and marshalling code. Importance: Meta programming has applications in reverse engineering, reengineering, source code analysis, static analysis, software renovation, domain-specific language engineering, and many others. Processing of syntax trees is central to all of these tasks. Concrete syntax patterns improve the practice of constructing meta programs. The combination of Concretely and Tympanic has the potential to make concrete syntax patterns available with very little effort, thereby improving and promoting the application of meta programming in the general software engineering context.

Timeline

No Timeline data yet.

Further Resources

Title
Author
Link
Type
Date
No Further Resources data yet.

References

Find more entities like Concrete Syntax with Black Box Parsers

Use the Golden Query Tool to find similar entities by any field in the Knowledge Graph, including industry, location, and more.
Open Query Tool
Access by API
Golden Query Tool
Golden logo

Company

  • Home
  • Press & Media
  • Blog
  • Careers
  • WE'RE HIRING

Products

  • Knowledge Graph
  • Query Tool
  • Data Requests
  • Knowledge Storage
  • API
  • Pricing
  • Enterprise
  • ChatGPT Plugin

Legal

  • Terms of Service
  • Enterprise Terms of Service
  • Privacy Policy

Help

  • Help center
  • API Documentation
  • Contact Us
By using this site, you agree to our Terms of Service.